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Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases
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In this paper a procedure for systematica priori derivation of the lattice Boltzmann models for nonideal
gases from the Enskog equation~the modified Boltzmann equation for dense gases! is presented. This treat-
ment provides a unified theory of lattice Boltzmann models for nonideal gases. The lattice Boltzmann equation
is systematically obtained by discretizing the Enskog equation in phase space and time. The lattice Boltzmann
model derived in this paper is thermodynamically consistent up to the order of discretization error. Existing
lattice Boltzmann models for nonideal gases are analyzed and compared in detail. An evaluation of these
models is made in light of the general procedure to construct the lattice Boltzmann model for nonideal gases
presented in this work.

PACS number~s!: 47.10.1g, 47.11.1j, 05.20.Dd
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I. INTRODUCTION

In recent years, there has been significant progress m
in the development of the lattice Boltzmann equation~LBE!
method@1–6#, a technique developed for modeling vario
complex systems, especially complex fluids. One particu
application of the lattice Boltzmann method which has
tracted considerable attention is the modeling of inhomo
neous fluids, such as non-ideal gases or multicomponent
ids @7–12#. These flows are important, but are difficult
simulate by conventional techniques of solving the Navi
Stokes equations. The main difficulty conventional tec
niques face is due to interfaces in the inhomogeneous fl
Computationally, one might be able to track a few, but c
tainly not very many, interfaces in a system. It is therefo
impractical to simulate a realistic system, which is inhom
geneous in density or composition, by directly solving t
Navier-Stokes equations without making some drastic
proximations. One can also view this problem from a diffe
ent perspective: Interfaces between different component
phases of a fluid system are thermodynamic effects resu
from interactions among molecules. To solve the Navi
Stokes equations, one needs to know the equation of s
which is usually unknown in the interfacial regions. It
therefore difficult to incorporate thermodynamics into t
Navier-Stokes equations in a consistent fashion, although
interfaces are precisely the result due to thermodynamic
fects. Hence one encounters some fundamental difficulti

There exists ample evidence that models based on
lattice Boltzmann equation, and its predecessor, the latt
gas automata~LGA! @13#, and other gas kinetic model
@14,15#, are particularly suitable for the complex system
such as nonideal gases and multicomponent fluids@8–11#.
There may be profound reasons for the success of the L
and LBE models in simulating those complex systems. T
LGA and LBE models do not start at the macroscopic lev
instead, they start at a mesoscopic level at which one can
a potentialto model interactions in the system. Macroscop
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or hydrodynamic behaviors of the system naturally eme
from mesoscopic dynamics, provided that the mesosco
dynamics possesses necessary and correct conservation
with associated symmetries such as rotational invarian
Galilean invariance, etc. It is well known that the macr
scopic behavior of a hydrodynamic system is rather inse
tive to the microscopic or mesoscopic details—the details
microscopic or mesoscopic dynamics only affect the num
cal values of the transport coefficients. This observation
key physical insight into the construction of simplistic k
netic models such as the lattice gas automata and the la
Boltzmann equation.

Historically, the lattice Boltzmann equation was first d
veloped empirically@1–3# from its predecessor—the lattice
gas automata@13#. This empiricism influences even the mo
recent lattice Boltzmann models@8–11#. Empirical lattice
Boltzmann models usually have some inherent artifa
which are not yet fully understood. One particular proble
with nonideal gases or multicomponent lattice Boltzma
models is the thermodynamic inconsistency: The so-ca
‘‘equilibrium state’’ in these models cannot be described
thermodynamics. In particular, one has difficulties in defi
ing an entropy of the system systematically, and thus lead
to, for instance, the inconsistency between the thermo
namic pressure and the kinetic one@16#. Although this issue
was previously mentioned@9#, no progress has been made
solving this problem, despite its paramount importance.

It is well understood that the original Boltzmann equati
only describes rarefied gases; it does not describe d
gases or liquids. In the Boltzmann gas limit~BGL!, N→`,
m→0, andr 0→0, Nm→ finite, Nr0

2→ finite, andNr0
3→0,

whereN, m, and r 0 are the particle number, particle mas
and interaction range, respectively. Thus, in the BGL,
mean free pathl;1/Nr0

2 remains constant, while the tota
interaction volumeNr0

3 goes to zero. Therefore, in the stri
thermodynamic sense, the Boltzmann equation only reta
the thermodynamic properties of aperfectgas—there is no
contribution to the transport of molecular properties fro
inter-particle forces, although collisions influenced by inte
particle interaction are considered. In order to properly
4982 ©2000 The American Physical Society
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scribe non-ideal dense gases, the effect of finite particle s
for instance, must be explicitly considered. It was Ensk
who first extended the Boltzmann equation to dense gase
including the volume exclusion effect along the rationale
van der Waals theory@17#, which leads to a nonideal ga
equation of state. The Enskog equation~the modified Boltz-
mann equation for dense gases! can indeed describe dens
gases or liquids with a nonideal gas equation of state t
certain extent. The Enskog equation describes a system
sisting of hard spheres, and it has been shown that the h
sphere system captures most qualitative properties o
simple liquid @18,19#. Furthermore, the revised Ensko
theory seems to be valid for a wide range of densities c
ering gasses, liquids, and even solids@20#.

It was recently demonstrated@21# that the lattice Boltz-
mann equation can be directly derived from the continu
Boltzmann equation. The method proposed in Refs.@21# is a
general procedure to construct lattice Boltzmann models
systematic anda priori fashion. Through this procedure w
can better understand the approximation made in the la
Boltzmann equation. The method also provides a mean
analyze the existing lattice Boltzmann models. In this pap
the method of Refs.@21# is applied to obtain the lattice
Boltzmann equation for nonideal gases~which have a non-
ideal gas equation of state!. The lattice Boltzmann equatio
for nonideal gases is derived from the Enskog equation
dense gases. The obtained lattice Boltzmann model for
thermal nonideal gases has a thermodynamic consisten
the sense of approximation, i.e., it is only correct up to
order of discretization. We compare our model with the e
isting ones. In comparing all models, we would like to stre
the fact that many defects of the existing LBE models
due to errors made at the level of fundamental conce
rather than at the level of numerical implementation.

This paper is a detailed extension of a work previou
published@22#, and is organized as follows. In Sec. II th
Enskog equation for dense gases with the Bhatnagar-Gr
Krook ~BGK! approximation@23# is briefly discussed. In
Sec. III the discretization procedure to obtain the lattice Bo
zmann equation for nonideal gases from the Enskog equa
is described. The discretization in time and phase space
small velocity expansion of the equilibrium distribution, an
the realization of the forcing term in the lattice Boltzma
equation are also discussed in detail. In Sec. IV the hyd
dynamics and some related thermodynamic quantities of
model are given. In Sec. V the model derived in this work
compared with other existing lattice Boltzmann models
nonideal gases, and the similarities and differences am
the existing models are explicitly shown. Section VI co
cludes the paper. A more detailed discussion of the Ens
equation for dense gases, and a derivation of the collis
term leading to a nonideal gas equation of state, are prov
in Appendix A. The Chapman-Enskog analysis for the latt
Boltzmann model for nonideal gases is demonstrated in
pendix B. In Appendix C, the forcing term in the Boltzman
equation is derived directly from an equilibrium distributio
function shifted by acceleration due to an external field. T
provides a simple and clear derivation of the models utiliz
the external force to mimic the nonideal gas effect.
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II. ENSKOG EQUATION FOR DENSE GASES

The Enskog equation@17,24,25# explicitly includes the ra-
dius of colliding particles,r 0, in the collision integral,

] t f 1j•“ f 1a•“j f 5J, ~1a!

J5E dm1@g~x1r 0r̂! f ~x,j8! f ~x12r 0r̂,j18!

2g~x2r 0r̂! f ~x,j! f ~x22r 0r̂,j1!#, ~1b!

wheref is the single particle~mass! distribution function,j
anda are the particle velocity and acceleration,g is the radial
distribution function,r̂ is the unit vector in the direction from
the center of the second particle off (x,j1) to the center of
the first particle off (x,j) at the instant of contact during
collision, andm1 is the collisional space of the second pa
ticle of f (x,j1). If we expand the collision operatorJ in a
Taylor series aboutx, use the BGK approximation@23,25–
27#, and assume the fluid to be isothermal and incompre
ible, we obtain the equations~details refer to Appendix A!

] t f 1j•“ f 1a•“j f 52
g

l
@ f 2 f (0)#1J8, ~2a!

J852 f (0)br g~j2u!•“ ln~r2g!, ~2b!

wherel is the relaxation time which characterizes a typic
collision process, andf (0) is the Maxwell local equilibrium
distribution function@28# given by

f (0)~r,u,u!5
1

z
r0~2pu!2D/2exp@2~j2u!2/2u2U~x!/u#,

~3!

whereD is the dimension of the momentum spacej; r, u,
andu5kBT/m are mass density, macroscopic velocity, a
the normalized temperature, respectively;kB , T, andm are
the Boltzmann constant, temperature, and molecular m
respectively;U(x) is a mean-field external potential~per unit
mass!;

r05
1

VE dxdj f (0) ~4!

is the average mass density in the system of volumeV; and

z~u![
1

VEV
dx exp@2U~x!/u#. ~5!

The first order collision termJ8 in Eqs. ~2! includes the
volume exclusion effect~see Appendix A for details!. In the
original work of Enskog,g5g(br), and b is the second
virial coefficient in the virial expansion of the equation
state for the hard-sphere system@17#. The hydrodynamic mo-
ments, i.e., mass densityr, velocity u, normalized tempera-
ture u, and energy densitye can be defined as follows:

r5E dj f (0)5E dj f 5
1

z
r0 exp~2U/u!, ~6a!
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ru5E djj f (0)5E djj f , ~6b!

D

2
ru5E dj

1

2
~j2u!2f (0)

5E dj
1

2
~j2u!2f , ~6c!

re5E dj F1

2
~j2u!21U~x!G f (0)

5E dj F1

2
~j2u!21U~x!G f . ~6d!

The accelerationa is purely due to the external field,U(x),
i.e.,

a[ j̇52“U. ~7!

For the Enskog equation or the revised Enskog equat
both global@29# and local@30,31# H theorems can be proved

It should be clearly emphasized that the accelerationa is
due to a self-consistent external field which is one-body
teraction in nature, as clearly and explicitly illustrated in t
derivation of the Boltzmann equation from Liouville equ
tion via Born-Bogoliubov-Green-Kirkwood-Yvon hierarch
@24,25,27,32,33#. In other words, the potentialU in the Max-
wellian defined by Eq.~3! only represents an external field o
body-force type, and this self-consistent mean-field inter
tion should not be confused with genuine multibody inter
tions that exist in nonideal gases. In the Boltzmann equat
all the interactions among particles~multibody interactions!
involved in a collision process are considered in the collis
o
e

e

t

n,

-

c-
-
n,

n

operator, represented by a collision cross section. In part
lar, the collision operator reduces to a parameterl of the
single relaxation time in the case of the BGK equation. In
limit of the BGL, the interactions among particles have
effect other than changing the numerical value of the visc
ity, as clearly illustrated by the BGK model. Therefore, no
ideal gas effects are not included in the Boltzmann equat
To exhibit nonideal gas effects in the thermodynamic lim
the finite range of interactions among particles in the sa
limit ~the finite size effect or the volume exclusion effec!,
which causes nonideal gas effects, must be explicitly con
ered. As is shown in detail below in Sec. V, the existing LB
models use some form of one-body interaction to mimic n
ideal gas effects. This approximation of multiparticle inte
action by some self-consistent, mean-field, one-body inte
tion seems to allow LBE models to simulate isotherm
nonideal gases because the effect of pressure and forcing
be distinguishable in the momentum equation. However,
is no longer true in the energy equation. Pressure and for
act quite differently in the energy equation: the former
fects the energy transport asP“•u, whereas the latter works
asra•u. In addition, multiparticle interactions affect the he
conductivity whereas the forcing does not. This suggests
the approximation obtained by using a body force to repl
multiparticle interaction to mimic the nonideal gas effe
would inevitably lead to some adverse consequences.
only way to correctly model nonideal gases is to at le
include the ‘‘finite-size effect’’ explicitly. The Enskog equa
tion is one such model.

A formal solution of the Enskog equation with the BG
approximation,@Eq. ~2!#, can be obtained by integratin
along characteristic linej over a time interval of lengthd t
@33#:
f ~x1jd t1
1
2 ad t

2 ,j1ad t ,t1d t!5e2d tg/l f ~x,j,t !1
g

l
e2d tg/lE

0

d t
et8g/l f (0)~x8,j1at8,t1t8!dt8

1e2d tg/lE
0

d t
et8g/lJ8~x8,j1at8,t1t8!dt8

2e2d tg/la•E
0

d t
et8g/l

“j f ~x8,j1at8,t1t8!dt8, ~8!
he
ice

e
a-

in-
wherex8[x(t)1jt81 1
2 at82 is the~approximated! trajectory

under the influence of an external field.1 The approximation
is made by the assumption that the accelerationa is a con-
stant locally. Note that the above equation is implicit n
only because of the term“j f , but also the time dependenc
of hydrodynamic momentsr, u, and u in the equilibrium
f (0) and the first order collision termJ8.

Our derivation of the lattice Boltzmann equation is bas

1We neglected the term oft82 in Ref. @22# because it does no
affect the final result.
t

d

upon a discretization of the above integral solution of t
Enskog equation. In what follows, we show that the latt
Boltzmann equation is an explicit finite difference schem
for solving the above integral solution of the Enskog equ
tion.

III. DERIVATION OF LATTICE BOLTZMANN
EQUATION

A. Discretization in time

By using the mean-value theorem, we can rewrite the
tegral solution of the BGK Enskog equation~8! as
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f ~x1jd t1
1
2 ad t

2 ,j1ad t ,t1d t!5e2d tg/l f ~x,j,t !1
1

l
e2d t(12e)g/l f (0)@xe,j1aed t ,t1ed t#d t

1e2d t(12e)g/lJ8@xe,j1aed t ,t1ed t#d t

2e2d t(12e)g/la•“j f @xe,j1aed t ,t1ed t#d t , ~9!
w
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wheree is a constant between 0 and 1, andxe[x(t)1jed t
1 1

2 a(ed t)
2. If we assume thatd t is small enough, andf (0),

J8, and“j f are smooth enough, locally in phase space,
can neglect the terms of the orderO(d t

2) or smaller in the
Taylor expansion of Eq.~9!, and obtain

f ~x1jd t ,j,t1d t!2 f ~x,j,t !

52
1

t
@ f ~x,j,t !2 f (0)~x,j,t !#

1J8~x,j,t !d t2a•“j f ~x,j,t !d t , ~10!

where t[l/d t is the dimensionless relaxation time. It
obvious that the accuracy of the above equation is o
first order in time. Consequently the accuracy of the latt
Boltzmann equations derived from the above equation is
first order in time in principle.

B. Low Mach number expansion and phase space
discretization

There are two steps in the derivation of lattice Boltzma
equation from Eq.~10!: ~a! construction of an appropriat
equilibrium distribution function, and~b! a coherent discreti-
zation of phase space. For the isothermal case, the equ
rium distribution function can be obtained by truncation
the Taylor expansion off (0) up to second order inu:

f (eq)5
1

z
r0~2pu!2D/2 exp~2U/u!

3exp~2j2/2u!F11
~j•u!

u
1

~j•u!2

2u2
2

u2

2uG
5rv~j!F11

~j•u!

u
1

~j•u!2

2u2
2

u2

2uG , ~11!

where

v~j!5~2pu!2D/2 exp~2j2/2u!. ~12!

The phase space discretization has to be done in such a
that not only all hydrodynamic moments, but also their c
responding fluxes, are preservedexactly. This implies that
the following quadrature must be evaluated exactly:

E djj kf (eq), 0<k<3, ~13!

for isothermal models.~Here we require that not only all th
hydrodynamic moments, but also the corresponding flux
are computedexactlyby the quadrature. This requirement
e

ly
e
o

n

ib-
f

ay
-

s,

perhaps more stringent than necessary because energy fl
usually not considered in the isothermal case.! Because of
the second order polynomial contained inf (eq) given by Eq.
~11!, the quadrature which must be evaluated exactly is

E djj k exp~2j 2/2u!, 0<k<5. ~14!

Because of the exponential function in the above integral,
Gaussian quadrature@34# is a natural choice for the evalua
tion of the integral. With akth order polynomialck(x) of x,
the Gaussian quadrature defined by the equation

E
2`

`

dx ck~x!e2x2/25 (
a51

n

Wack~xa! ~15!

is exactfor 0<k<2n21, whereWa andxa are the weights
and the abscissas of the quadrature, respectively.

C. Forcing term

The forcing term,a•“j f must be constructed explicitly
in the lattice Boltzmann equation. We use the moment c
straint to construct this term. The moments~up to the second
order! of the forcing term are

E dj a•“j f 5E dj a•“j f (0)50, ~16a!

E djj a•“j f 5E djj a•“j f (0)52ra, ~16b!

E djj ij ja•“j f 5E djj ij ja•“j f (0)52r~aiuj1ajui !.

~16c!

Here, we note thatf can be replaced~or approximated! by
f (0) without affecting the moments of the forcing term up
the second order inj—in general the replacement off by f (0)

does not hold for the moments higher than the third orde
j. This is owing to the fact thatf and f (0) have exactly the
same conserved~or hydrodynamic! moments, a constraint on
the normal solution of the Boltzmann equation in t
Chapman-Enskog analysis.

The forcing terma•“j f can be written in terms of an
expansion inj as

a•“j f 5rv~j!@c(0)1ci
(1)j i1ci j

(2)j ij j1•••#, ~17!

where the Einstein notation of summation for the repea
Roman indicesi, j , . . . is used. The first few coefficien
ci 1i 2••• i n

(n) can be easily obtained by using the moment co

straints given by Eqs.~16! if the above expansion is trun
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cated. With the truncated expansion up to the second ord
j and the first order inu, we obtain

c(0)5
1

jT
2

a•u, ~18a!

ci
(1)52

1

jT
2

ai , ~18b!

ci j
(2)52

1

2jT
4 ~aiuj1ajui !, ~18c!

where jT[Au is proportional to the thermal velocity of
particle at temperatureT. Therefore, up to the order ofO(u)
andO(j2), we have

a•“j f 52rv~j!jT
22@~j2u!1jT

22~j•u!j#•a. ~19!

Note that in the above expansion, only terms up to first or
in u have been retained, because there is an overall facto
d t in the forcing term, as indicated in Eq.~10!. Also d t is
O(u) in the Chapman-Enskog analysis for the lattice Bol
mann equation~see Appendix B for an explanation!. It
should be stressed that every term in the Boltzmann equa
must be treated equally in terms of maintaining the accura
Specifically speaking, the expansion of the forcing term m
be of the second order inj, and the same in the small ex
pansion parameterd t , in order to be consistent with the ex
pansion of the equilibrium. It should be noted that there
other methods to compute the expansion of the forcing te
Up to second order inj and first order inu, the expansion of
a•“j f (0) is identical to that ofa•“j f because of the con
straints given by Eqs.~16!. Therefore, the result of Eq.~19!
can be obtained by computinga•“j f (0) explicitly.

It should be pointed out that there is another way to
clude the effect of forcing due to an external field. Assum
that multibody interactions among the particles in the sys
are of short range, and the mean free path of a particl
much larger than the interaction range, then a particle is
celerated only by the external field between collisions. Th
the net effect of the acceleration due to the external fi
during the mean free time is an increment of particle vel
ity. Therefore, one can use an equilibrium distribution fun
tion with a velocity shift to account for the effect of th
forcing due to the external field@35#, i.e., f (0)(r,u,u) be-
comes f (0)(r,u2atd t ,u) in the presence of an extern
field. Naturally, the accelerated equilibrium distributio
function f (0)(r,u2atd t ,u) leads to a forcing term in the
lattice Boltzmann equation when discretized~see Appendix
C for details!. It should be noted that these two approach
are equivalent up to the first order ind t . At a higher order of
d t the velocity shift in the equilibrium distribution will intro-
duce nonlinear terms which are different from what are
rived from the continuous equation.

D. Two-dimensional nine-velocity model on a square lattice

We now use the two-dimensional nine-velocity LB
model on a square lattice space as a concrete examp
illustrate our discretization scheme. A Cartesian coordin
in

r
of

-

on
y.
st

e
.

-
g
m
is
c-
s
d
-
-

s

-

to
te

system~in j space! is used in this case, and accordingly w
setc(j)5jx

kjy
l . Thus the quadrature needed to be evalua

is the

I 5jT
k1 l 12I kI l , ~20!

where

I k[E
2`

`

dzzke2z2/2, ~21!

and z5jx /jT or jy /jT . Naturally, the third-order Hermite
formula @34# is the optimal choice to evaluateI k for the
purpose of deriving the nine-velocity LBE model, i.e.,I k

5( j 51
3 v jz j

k . The three abscissas (z j ) and the corresponding
weights (v j ) of the quadrature are

z152A3, z250, z35A3, ~22a!

v15Ap/6, v252Ap/3, v35Ap/6. ~22b!

Then the integral of Eq.~15! becomes

I 52jT
2Fv2

2c~0!1 (
a51

4

v1v2c~ja!1 (
a55

8

v1
2c~ja!G ,

~23!

where ja is the zero velocity vector fora50, one of the
vectors ofA3jT(61,0) andA3jT(0,61) for a51 –4, and
one of the vectors ofA3jT(61,61) for a55 –8. Note that
the above quadrature is exact for the integral defined by
~21! whenk<5.

Now momentum space is discretized with nine discr
velocities $jaua50,1, . . . ,8%. To obtain the nine-velocity
model, the configuration space is discretized accordin
i.e., it is discretized into a square lattice space with a latt
constantdx5A3jTd t . It should be stressed that the tempe
ture T ~or u! is a constant here because we are only dea
with an isothermal model. We can therefore choosedx to be
a fundamental quantity instead; thusA3jT5c[dx /d t , or u
5jT

25c2/3. Thus the phase space is discretized coheren
the discretizations of the velocity space and the configura
space are closely coupled together. This is one feature o
lattice Boltzmann equation distinctive from other finite d
ference schemes.

By comparing Eqs.~15! and ~23!, we can identify the
weights defined in Eq.~15!,

Wa52pjT
2 exp~ja

2/2jT
2!wa , ~24!

where

wa5H 4/9, a50

1/9, a51,2,3,4

1/36, a55,6,7,8.

~25!

Then the equilibrium distribution function for the nine
velocity model is
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f a
(eq)5Wa f (eq)~x,ja ,t !

5warF11
3~ea•u!

c2
1

9~ea•u!2

2c4
2

3u2

2c2G , ~26!

where

ea5H ~0,0!, a50

~cosfa ,sinfa!c, a51,2,3,4

~cosfa ,sinfa!A2c, a55,6,7,8,

~27!

and fa5(a21)p/2 for a51 –4, and fa5(a25)p/2
1p/4 for a55 –8.

E. Discretized forcing term

Applying the same discretization to the forcing term
Eq. ~19!, we have the discretized forcing term for the nin
velocity model:

Fa523 warF 1

c2
~ea2u!13

~ea•u!

c4
eaG•a. ~28!

The forcing in the above equation satisfies the following c
straints:

(
a

Fa50, ~29a!

(
a

eaFa52ra, ~29b!

(
a

ea,iea, jFa52r~uiaj1ujai !. ~29c!

The above constraints are the discrete counterpart of
~16!. If only the first two moment equations in Eqs.~29! are
to be satisfied, and the third constraint of Eq.~29c! is re-
placed by

(
a

ea,iea, jFa50, ~30!

the forcing term thus reduces to

Fa523 war
~ea•a!

c2
. ~31!

The above forcing term is what has often been used for c
stant body force in the literature@36,37#. The adversity of
using the above forcing term is that the Galilean invarian
is lost if a is not a constant in space. In addition, the wo
done by the forcing,ra•u, does not appear in the energ
balance equation, and thus leads to an incorrect energy
ance equation. As shown in Sec. V, the forcing terms
similar forms are used to produce various nonideal gas
fects in previous models@8–11#.
-

-

s.

n-

e

al-
f
f-

F. The lattice Boltzmann equation

The first order collision term,J8 of Eq. ~2b!, can be ex-
plicitly written in a discrete form:

Ja852 f (0)br g~ea2u!•“ ln~r2g!. ~32!

With the discretizedJ8 included, the lattice Boltzmann equa
tion for dense gases is

f a~x1ead t ,t1d t!2 f a~x,t !

52
g

t
@ f a~x,t !2 f a

(eq)~x,t !#2brg fa
(eq)~x,t !

3~ea2u!•“~r2g!2Fad t , ~33!

where the forcingFa is given by Eq.~28!. The hydrody-
namic moments in the lattice Boltzmann models are given

r5(
a

f a5(
a

f a
(eq) , ~34a!

ru5(
a

ea f a5(
a

ea f a
(eq) , ~34b!

ru5
1

2 (
a

~ea2u!2f a5
1

2 (
a

~ea2u!2f a
(eq) . ~34c!

The first order collision termJa8 involves the density gradien
“r, which can be explicitly computed by either the seco
order central differencing

ea•“r~x!d t5
1
2 @r~x1ead t!2r~x2ead t!#

or the first order differencing

ea•“r~x!d t5r~x1ead t!2r~x!.

The alternative would be to construct a collision term simi
to the original Enskog collision term given by Eq.~1b!, with-
out the Taylor expansion in space.

IV. HYDRODYNAMICS AND THERMODYNAMICS

Through the Chapman-Enskog analysis~see Appendix B
for the details!, the hydrodynamic equations of the lattic
Boltzmann model for dense gases, given by Eq.~33! with the
equilibrium of Eq.~26!, are

] tr1“•~ru!50, ~35a!

] tu 1u•“u52
1

r
“P1n“2u1a, ~35b!

where the viscosity

n5
~2t2g!

6g
cdx , ~36!

and the pressure~or the equation of state! is given by

P5ru~11brg!. ~37!
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With the above equation of state, the sound speedcs be-
comes

cs
25uF11b

d

dr
~r2g!G . ~38!

For ideal gas,b50 andg51, andP, n, andcs recover the
previous results for ideal gas. The dependence of the vis
ity n on g can be removed by replacingg in the BGK colli-
sion term by 1.

Although in the original work of Enskog~see Ref.@17#!, g
only accommodates the volume exclusion effect, or repuls
interaction, in the gas of hard spheres, there is no reaso
prohibit the inclusion of a more general interaction. Indeedg
can be somewhat arbitrary, depending on the interaction.
radial distribution functiong provides a freedom to alter th
transport coefficients (n and cs) as well as the equation o
state. However, it should be stressed that there are boun
this freedom. From Eq.~36!, it becomes obvious that th
model is stable if and only ift.g/2. This suggests thatg
also affects the numerical stability of the system. In additi
the sound speed can be changed byg. But one must not
expect to achievecs>c5dx /d t or the basic principle of
physics would be violated, becausec limits the speed of
information propagation in the LBE system. Therefore, th
are bounds to the values ofg and derivative ofr2g.

With the equation of the state given, the Helmholtz fr
energy density can be given by

c~r!5rE P

r2
dr5ruF ln r1bE gdr G , ~39!

because

P5r
dc

dr
2c. ~40!

And the radial distribution functiong can also be compute
from eitherP or c. That is, with eitherP or c given, one can
derive all the relevant thermodynamic quantities from
free energyc. For example, given the van der Waals equ
tion of state,

P5ruF 1

~12br!
2

a

u
rG , ~41!

where parametera accounts for the mean result of attracti
potential among particles@17#, according to Eqs.~37! and
~41! the radial distribution functiong is

g5
1

~12br!
2

a

b u
.

The corresponding free energy density is

c5ruF lnS r

12br D2
a

u
rG .

With the free energy and the equation of state defined,
Maxwell construction @38# to determine the coexistenc
curve becomes physically meaningful and consistent. Ne
theless, care must be taken in conducting the Maxwell c
struction in the discretized situation. The phenomena
liquid-gas phase transition can be simulated by the mode
s-

e
to

he

to

,

e

e
-

e

r-
n-
f
y

charging the value ofb*gdr ~or simply justb) in the free
energy densityc relative to the temperatureu, as indicated
by Eq. ~39!. Bear in mind that the temperatureu cannot be
charged, because it is a fixed constant in the isothermal L
models. It should be noted thatg should be computed with a
given potential in principle. The above manipulation to o
tain g is not based upon principles of physics. Also, the u
of the free energy adds nothing to the physics of the mo
but only reflects a matter of custom or preference.

V. OTHER MODELS

What we propose in this work is a systematic construct
of the lattice Boltzmann equation in a consistent anda priori
fashion, with the premise that the continuous Boltzma
equation is adequate to describe underlying physics of
systems of interest. In particular, for nonideal gases,
must use the Enskog equation for dense gases instead o
original Boltzmann equation for dilute gases. In light of th
viewpoint, a survey of the existing LBE models for nonide
gases is now in order. We discuss two lattice Boltzma
models for nonideal gases which were independently p
posed by Shan and Chen@8# Swift, Osborn, and Yeoman
@9#. In spite of the significant differences in their appearan
and technical details, these models share one common
ture in their constructions of the lattice Boltzmann model
nonideal gases: The derivation of the lattice Boltzmann m
els is mainly accomplished by constructing a phenome
logical equilibrium distribution function which can accom
modate nonideal gas effects and which satisfies all
conservation constraints, and therefore leads to hydrodyn
ics. In what follows, we shall analyze these two models a
explicitly demonstrate the difference between the model
rived in this paper and the aforementioned two.

A. Model with interacting potential

In the model proposed by Shan and Chen@8#, a local
density-dependent potentialU„r(x)…}Guc2(r) is explicitly
given, whereG is the interaction strength andc is an arbi-
trary function of densityr. The change of the particle veloc
ity j ~not the macroscopic velocityu) due toU(x) is

dj52“U~x!td t5atd t ,

and du52dj is explicitly substituted into the equilibrium
distribution function, i.e.,

f a
(eq)5warH 11

3@ea•~u2atd t!#

c2

1
9@ea•~u2atd t!#

2

2c4
2

3~u2ad t!
2

2c2 J
5warF11

3~ea•u!

c2
1

9~ea•u!2

2c4
2

3u2

2c2G
23 warF 1

c2
~ea2u!13

~ea•u!

c4
eaG•atd t

2
3

2
warFa2

c2
2

~ea•a!2

c4 Gt2d t
2 . ~42!
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In the above result, the first part is the usual equilibriu
distribution function which has an ideal gas equation of st
built in, and the second part accounts for the interaction
nonideal gas effects, which is identical to the forcing te
given by Eq.~28!, produced by the forcing terma•“j f in
the streaming operator. By combining the forcing with t
pressure term in the Navier-Stokes equation, the equatio
the state becomes

P5r@u1U~r!#.

Thus nonideal gas effects are obtained through the phen
enological potentialU(r). To achieve the purpose of mim
icking nonideal gas effects, the leading term in the den
expansion ofU has to be of second order inr, i.e., U
}Gur2, or c}r, as specifically indicated in Ref.@8#. Obvi-
ously, the potentialU„r(x)… is intended to be the interpar
ticle interaction. However, it is mathematically implement
as an external field such that its sole effect is to produc
term “U in the momentum equation@8#. The consequence
of this conceptual confusion is that the energy balance eq
tion is incorrect, because the result of an external field is
work of r a•u, while the result of the interparticle interactio
is a heat transfer due to the viscous effect, as shown in
pendix B. Specifically, in the energy equation, the corr
term related to the pressure isP“•u, where the pressure i
exactly the one that appears in the momentum equat
However, with the one-body interaction, this becom
ru“•u1r“U•u, i.e., the equation of state is not the sam
in the momentum equation and the energy equation. Furt
more, the third part in Eq.~42!, which is proportional tod t

2

and nonlinear ina, is omitted. This term can be significan
when d t is set to unity, as it is a common practice in th
lattice Boltzmann simulations. It should also be pointed
that the viscosity in this model remains intact—it is not a
fected by the potentialU.

We have also noted a recent attempt to theoretically
tify the model of Shan and Chen. With some crude appro
mations@11#, He et al. showed that a desirable forcing ter
to mimic nonideal gas effects isFa} f a

(eq)(ea2u)•Fd t ,
where F}2“V2brug“ ln(r2g), and V522ar2k“2r
accounts for the attractive part in the interparticle interacti
Without any surprise, this model reproduces an anticipa
non-ideal gas equation of state,P'ru(11brg)1rV, and
avoids the nonlinear term ofd t

2 in the model of interacting
potential, as expected. However, the energy balance equ
from this model is still incorrect, due to the similarity to th
previous model. It should also be noted that it is conceptu
incorrect to write the pressure asP'ru(11brg)1rV. One
correct way to generalize the van der Waals equation of s
is writing it as @39#

P1ar25ur~11brg!, ~43!

where parametera is related to the two-body interaction po
tential by

a52
2

3

p

m2E dV~r !

dr
r 3dr. ~44!
e
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In the Enskog equation,g is obtained from a hard-sphere ga
thus the attractive potential has to be inserted through par
etera.

It is clear that interparticle interactions are conceiv
mathematically as external fields in the aforementioned m
els. Perhaps the only plausible justification for this view
that the interparticle interaction can be approximated b
self-consistent one-body interaction field~as in the Vlasov
approximation for Coulomb gases!. In this case,

E dx2dj2“2V12•“j f 2~x,j,x2 ,j2 ,t !

5“j f ~x,j,t !•E dx2dj2f ~x2 ,j2 ,t !“2V12

5“j f •“Ū, ~45!

where the Boltzmann approximation has been invoked, a

“Ū5E dx2dj2f ~x2 ,j2 ,t !“2V12

defines the self-inconsistent mean-field potentialŪ. This ap-
proximation is justified for rarefied collisionless plasma w
Coulomb interactions, and is simply inappropriate for no
ideal gas systems.

B. Model with free energy

A comparison with the model proposed in Ref.@9# is
slightly more elaborate. Stressing the consistency of ther
dynamics in the lattice Boltzmann equation and inspired
Cahn-Hilliard’s model for surface tension@40,41#, the model
proposed by Swift, Osborn, and Yeomans@9# started with a
free energy functional,

C5E dxFk2 i“ri21c~r!G , ~46!

where c is the bulk free energy density. The free ener
functional in turn determines the diagonal term of the pr
sure tensor,

P5r
dC

dr
2C5p2kr“2r2

k

2
i“ri2, ~47!

where

p5r
dc

dr
2c ~48!

is the equation of state of the fluid. The full pressure tenso
given by

Pi j 5Pd i j 1k] ir] jr. ~49!

With the pressure tensor given, the equilibrium distributi
function is constructed such that it not only satisfies the c
servation constraints of Eqs.~34!, but also produces the
above pressure tensor by enforcing additional constra
(a f a

(eq)ea,iea, j5Pi j @9#.
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To make our analysis as transparent as possible, it is
cial to make an explicit connection between the model
Swift et al. and the model of Shan and Chen. The equil
rium distribution function in the model of Swiftet al. with
triangular lattice@9# can be rewritten as

f a
(eq)5

1

3
rF11~ea•u!12~ea•u!22

1

2
u2G1

k

3
$~ea,x

2 2ea,y
2 !

3@~]xr!22~]yr!2#12ea,xea,y]xr]yr%2
k

3
r“2r

1
1

3
@rc8~r!2c~r!2r#, ~50!

where c5dx /d t is assumed to be unity. The first term
brackets@ # is nothing but the usual equilibrium distributio
function of the seven-velocity Frisch-Hasslacher-Pom
model@13,21#. The term in bracket$ % is an expression of the
tensorEi j [(ea,i] ir)(ea, j] jr) written in terms of a traceles
and an off-diagonal part with correct symmetry such that
the terms proportional tok reduce to the termk@r“2r
1i“ri2/2# in the diagonal part of the pressure tensor, giv
by Eq.~47!. This term is directly taken from Cahn-Hilliard’
model, and it induces surface tension due to density grad
in addition to the part due to the~nonideal gas! equation of
state, but it does not contribute to the hydrodynamic press
~or the equation of state!. The nonideal gas part in the equ
tion of state is contained in the last part of the above eq
tion, @rc8(r)2c(r)2r#/3, which can be written in a den
sity expansion in general,

uw[ 1
3 @rc8~r!2c~r!2r#5ur2~B1Cr1••• !, ~51!

where coefficientsB, C, . . . are virial coefficients. We hav
noted that only the leading term in the density expansion
w, Br2, is needed in order to capture the nonideal gas
fects, for this term not only leads to a nonideal gas equa
of state, but also provides all the necessary terms to con
the surface tension in Cahn-Hilliard’s model, as

““r252~r“2r1i“ri2!.

By comparing Eqs.~50! and ~42!, the connection betwee
the models of Swiftet al. and Shan and Chen becomes o
vious if Eq.~31! for the forcing term is used and the equiv
lence ofuw5ea•“U}Fa is established. Thus the model o
Swift et al. uses Eq.~31! for the forcing term, which is only
valid for a constant body force, whereas the model of S
and Chen uses Eq.~28! for the forcing term. The interaction
strength in the model of Swiftet al. is proportional to tem-
peratureu, whereas in the model of Shan and Chen, it
proportional to a constantG. Since the connection of the tw
models can be explicitly established, all the analysis in S
V A can be immediately applied to the present model.

It should be pointed out that at the level of the Boltzma
equation, the density gradient term,i“ri2, in the free energy
functional, has no justification within the framework o
Chapman-Enskog analysis.@In fact, the density gradient“r
can only appear in the second order solution off ~the Burnett
equation@17#! in the Chapman-Enskog analysis, which
beyond the Navier-Stokes equations.# It is clear that the
u-
f
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nt
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f
f-
n
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n
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analysis presented in Ref.@9# and the subsequent work@10#
does not follow the Chapman-Enskog analysis; therefore
cannot lead to a mathematically valid derivation of mac
scopic equations from the mesoscopic equation. Some
ther limitations of the model are discussed next.

First, the model lacks Galilean invariance, mainly beca
of the forcing termFa}uw. This defect can be fixed by
using a correct forcing term according to Eq.~28!, i.e.,

Fa}r@~ea2u!13~ea•u!ea#•“w.

However, there are other terms involving the density gra
ent which also cause the problem of lack of Galilean inva
ance@42#.

Second, the ratio between the number of rest particles
the number of moving particles depends on the local den
gradient. It can be shown that this ratio is related to tempe
ture, because in the two-speed system, the width of the e
librium distribution, which is the temperature, is determin
by this ratio.„To be exact, according to the definition ofv

@Eq. ~12!#, the ratio v(0)/v(c)5ec2/2u, which must be a
constant for isothermal fluids.‡ This means that the tempera
ture may vary locally depending on the density gradie
while the model is claimed to simulate an isothermal flu
Again, this problem can be rectified by using the corre
forcing term mentioned earlier.

Third, the model cannot lead to the correct energy bala
equation for the very same reason that the terms relate
the free energy can be considered as a body force due
thermodynamic potential~free energy in the model! which is
a mean-field quantity, as shown in Sec. V A

We stress that the differences between body force te
and interaction terms cannot be circumvented by techn
tricks such as using a correct forcing term, or includi
higher order terms inu in the equilibrium distribution func-
tion f a

(eq) . The reason for this is obvious: as long as a me
field potential, whether an interaction or a free energy,
employed to mimic nonideal gas effects, the constraints
Eqs. ~16! must be satisfied; therefore, the inconsistency
the pressure between the momentum equation and the en
equation arises, regardless of the order~in u) of the equilib-
rium distribution function— this is true even in the con
tinuum case. Furthermore, certain terms in the pressure
sor, Pi j , were arbitrarily omitted in the macroscop
equations derived from the model@9#. Therefore,Pi j is not
obtained in a self-consistent manner. Following a simi
analysis, one can also conclude that a multicomponent m
constructed in the same fashion@10# shares some of the sam
limitations. One distinctive feature of this model@9# is that,
by using Cahn-Hilliard’s model, the surface tension can
controlled independently of the equation of state by the d
sity gradient. This appears to be the reason why the spur
mass flux is reduced in this model@9#.

In a recent work by Holdychet al. @42#, it was shown that
the model of Swiftet al. does not satisfy the Navier-Stoke
equation, in either the bulk region or interface region,
though the LBE model@9# has conservation laws built in
@42#. Numerous simple hydrodynamic tests showed that
departure of the model from the Navier-Stokes equation
rather significant both quantitatively and qualitatively@42#.
When the model is used to simulate a simple hydrodyna
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problem such as a single droplet subjected to shear, sim
tions of the kind presented in a recent work of Wagner a
Yeomans@43# are qualitative, and do not sufficiently valida
numerical predictions of the model.

It should also be noted that the Hamiltonian approach@8#
and the free energy approach@9,10# are indeed equivalent in
terms of phenomenology. Given a HamiltonianH of an in-
teractingN-particle system, the corresponding free energyC
can be obtained via the partition function based uponH.
Thus, in principle, information is neither gained nor lo
whether the problem is formulated in terms ofH or C. One
cannot claim that using the free energy and utilizing
Maxwell construction leads to a better or more physi
model. Perhaps the only advantage of using the free en
is thatC is a global state variable, and therefore it is ind
pendent of coordinates. However, this advantage bear
relevance in the LBE models.

In summary, the main difference between the model
rived from the Enskog equation and the existing ones is
the physics. Our starting point is the Enskog equation
dense gases in which the nonideal gas effects are natu
considered, whereas in all other existing models@8–11# the
starting point is the original Boltzmann equation which
only suitable for dilute gases~ideal gases!. This necessitates
variousad hocapproximations. One notable feature comm
to these models is that the viscosity is independent of n
ideal gas effects, which is inconsistent with the Enskog eq
tion.

VI. CONCLUSION

We are now in the position to lay out the procedure
constructing a thermodynamically consistent lattice Bo
mann equation for nonideal gases. Given interparticle in
actions, the radius distribution functiong(r ) can be com-
puted in principle, and the first order collision termJ8 in the
Enskog equation can be constructed. This collision te
would correctly produce the nonideal gas effects. With t
term implemented in the lattice Boltzmann model, a therm
dynamic and hydrodynamic consistency can be achieve
the sense of the finite difference approximation. Withg
given, the free energy densityc can be obtained explicitly
Subsequently, other pertinent thermodynamic quantities s
as the equation of state, pressure tensor, surface tension
so on, can be directly and easily derived from the free
ergy, while the correct hydrodynamics is preserved in
lattice Boltzmann equation.

It should be emphasized that because the Boltzm
equation describes mesoscopic dynamics, the constraints
posed on it must be compatible with the mesoscopic dyn
ics. Specifically speaking, given an arbitrary interaction in
system, one canin principle compute the equation of stat
~e.g., by means of the virial expansion!. This is an averaging
process, because macroscopic observables~the equation of
state, surface tension, etc.! are averaged macroscopic qua
tities. But, the reverse are not true in general: given an a
trary equation of state, one may not be to able to find
unique corresponding interaction in the mesoscopic desc
tion. However, this can be achieved in the formalism of
lattice Boltzmann equation, owing to the simple structure
the formalism. Nevertheless, the simplicity of the LB
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method does not comes without a price—the inconsiste
in the LBE thermodynamics and discrete effects are inhe
to the LBE models. In contrast to the LBE method, it is al
worthwhile to mention some new approaches more clos
related to standard computational fluid dynamics meth
@44–46# which show promise for dealing with the interfaci
problems.

It is a fair observation that so far a large part of the latt
Boltzmann enterprise rests upon the phenomenology of
ating various ‘‘new’’ equilibrium distribution functions to
accommodate different physical phenomena ranging fr
nonideal gases or multi-component fluids@9,10# to viscoelas-
tic media@47#. Previous procedures to construct the equil
rium distribution can be summarized as follows. By obse
ing the hydrodynamic equations of a system of interest,
can anticipate those terms in the equilibrium distributi
which are necessary to produce the desired results~usually a
desirable stress tensor!. Then proportionality factors for thes
terms are determined by the conservation constraints.
evident that this approach lacks mathematical rigor, and
the models derived in this fashion may suffer from artific
defects which are uncontrollable, such as the models in R
@9,10,47#. The problem common to these models is that
mathematical rigor of the Chapman-Enskog analysis w
completely ignored, as typified by the work in Ref.@9#.

It is important to point out that the rigor of the Chapma
Enskog analysis can be retained without following the vie
point of deriving lattice Boltzmann models via discretizatio
of the corresponding continuous kinetic equation. Given a
of discrete velocities on a lattice space with a collision o
erator obeying conservation laws and associated symmet
an orthogonal basis spanned by the eigenvectors of the
lision operator can be obtained@48,49#. The kinetic modes of
the basis, which are fluxes, can have different relaxat
times @48,49#. Not only does this approach overcome som
shortcomings of the single relaxation time method such a
fixed Prandtl number, but it also follows the Chapma
Enskog analysis rigorously.

In this paper we carry out a systematic derivation of t
lattice Boltzmann equation for nonideal gases from the E
skog equation. It should be stressed that the procedure i
trated here is general and can be easily extended to o
lattice Boltzmann models, e.g., multicomponent models@7#.
This procedure can also be used to improve the accurac
the lattice Boltzmann models systematically. Our proced
can be briefly summarized as follows. First, one can obse
the equation of state of a system, and extract the nonidea
part in it. This part is related to the radial distribution fun
tion g(r ). From g(r ), the first order collision term respon
sible for it can be constructed. Then one can systematic
discretize the Enskog equation to obtain the correspond
lattice Boltzmann equation. This approach is not only rig
ous, but also systematic. The equilibrium distribution
uniquely determined in this procedure. It enables one to
clearly what approximation is made in the derivation of t
lattice Boltzmann equation. In this way it can be shown th
the accuracy of the lattice Boltzmann equation is indeed s
ond order in time and space@51#.

In addition to ana priori derivation of the lattice Boltz-
mann model for nonideal gases, we explicitly illustrate t
differences between our model and existing ones. Ba
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upon our analysis, we can conclude that the problem in
model of interacting potential@8# is a minor one, and can b
easily fixed by either directly using a forcing term as w
proposed, or adding a correction to remove thed t

2 dependent
terms. In contrast to the model of an interacting potential,
model of free energy@9# presents many major problems.
starts with the intention to correct the thermodynamic inc
sistency in other models, but it ends up with more serio
inconsistencies, because the pressure tensor in the mod
constructed without any physical basis at the level of
Boltzmann equation. It is also important to point out th
none of these models can lead to a correct energy bal
equation, and therefore they are inconsistent with their c
tinuous counterpart—the Boltzmann equation. Starting w
the Enskog equation in the presence of an external field
through a rigorous discretization procedure, we can obta
consistent thermodynamics and hydrodynamics for nonid
gases in the sense of the discretizing approximation. W
this systematic means, one can use either an interaction
free energy to obtain the equation of state, that, when in
porated into a collision term, accounts for nonideal gas
fects among the particles. Our future work will extend o
theory to multicomponent fluids, and obtain a consist
thermodynamics for lattice Boltzmann models.
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APPENDIX A: MODIFIED BOLTZMANN EQUATION
FOR DENSE GASES

The Boltzmann equation

] t f 1j•“ f 1a•“j f 5J ~A1!

can be modified for dense gas by explicitly considering
volume exclusion effect in the collision termJ for hard
spheres of radiusr 0 as @17,24,25#

J5E dm1@g~x1r 0r̂! f ~x,j8! f ~x12r 0r̂,j18!

2g~x2r 0r̂! f ~x,j! f ~x22r 0r̂,j1!#

5J(0)1J(1)1J(2)1•••, ~A2a!

J(0)5gE dm1~ f 8 f 182 f f 1!, ~A2b!

J(1)5r 0E dm1~ f 8 f 181 f f 1! r̂•“g, ~A2c!

J(2)52r 0gE dm1r̂•~ f 8“ f 181 f“ f 1!, ~A2d!
e

e
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e
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r
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n

e

whereg is the radial distribution function,r̂ is the unit vector
pointing from the particlef 1 to the particle f, J(n), n
50,1,2, . . . , areobtained by a Taylor expansion ofg, f 1

[ f (j1), and f 18[ f (j18) in Eq. ~A2a! of J aboutx,

dm15ij12jis dVdj1 , ~A3!

ands andV are differential collision cross section and th
solid angle in coordinatex space. The Enskog equation
also called the modified Boltzmann equation in the literat
@25#.

The termJ(0) given by Eq.~A2b! is the usual collision
term in the Boltzmann equation with an extra factorg, which
can be approximated by the BGK approximation, i.e.,

J(0)52
1

l
@ f 2 f (0)#g, ~A4!

where f (0) is the equilibrium distribution function of Max-
well and Boltzmann.

The termsJ(1) andJ(2) can be explicitly evaluated for a
hard sphere potential. For hard spheres of radiusr 0, we have

s dV5H ds52r 0 cosqdq in two dimensions

s ds52r 0
2 sin~2q!dqdw in three dimensions,

~A5!

whereq is the azimuthal angle between thez axis parallel to
(j12j) and (j82j), 0<q<p/2, w is the polar angle on
the plane perpendicular to thez axis, and

s52r 0 sinq ~A6!

is the impact parameter in the collision. With the approxim
tion of f ' f (0) in Eqs.~A2c! and ~A2d!, we have

J(1)52 f (0)br~j2u!•“g, ~A7a!

J(2)52 f (0)brgF2~j2u!•“ ln r

1
2

~D12!

~j i2ui !~j j2uj !] iuj

u

1H 1

~D12!

~j2u!2

u
21J“•u

1
1

2 H D

~D12!

~j2u!2

u
21J ~j2u!•“ ln uG ,

~A7b!

where b is the second virial coefficient;r, u, and u
5kBT/m, are the mass density, velocity, and normaliz
temperature of fluid, respectively;m is the particle mass; and
D is the dimension of thej space. In the above equation, th
Einstein notation for summation among repeated indice
used. The second virial coefficient for the hard sphere ga

b5V0 /m, ~A8!

whereV0 is the volume of a hard sphere, which is 16pr 0
3/3

in three dimensions, orpr 0
2 in two dimensions. Note tha
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br5V0n, wheren is the particle number density, is a dime
sionless quantity called the packing fraction~for the hard-
sphere system!, andg is a function ofbr.

It should be noted that the collision termJ in the Enskog
equation does not conserve mass, momentum, and en
locally, because it involves nonlocal interactions@17#. How-
ever, mass, momentum, and energy are conserved glob
The nonlocal interaction is expected to produce nonideal
effects due to the exclusive volume in momentum and
ergy equations in hydrodynamics. The first termJ(0) in the
expansion ofJ is the usual collision term in the origina
Boltzmann equation for dilute gases~multiplied by a factor
g), and it conserves mass, momentum, and energy loc
Other higher order terms,J(n) for n>1, do not conserve
mass, momentum, and energy locally; they are respons
for the flux~of mass, momentum, and energy! transfer due to
nonlocal interactions.

To the first order approximation in the Chapman-Ensk
analysis, onlyJ(0), J(1), and J(2) shall be retained in the
modified Boltzmann equation for the dense gases. Hig
order collision terms,J(n), n>3, are neglected because th
are involved a higher order or higher power of gradients
r, u, andu. The termJ(2) can be simplify for incompressible
and isothermal fluids. In that case, the last two terms in
~A7b! vanish. Then the term of] iuj must be neglected owing
to the conservation constraints. The term of“r can be in-
cluded intoJ8 by

J852 f (0)br~j2u!•@“g1g“ ln r2#

52 f (0)br g~j2u!•“ ln~r2g!. ~A9!

It is clear thatJ8 conserves mass locally. However, it
responsible for flux transfer due to the nonlocal interacti
The first order moment ofJ8, which is the mass flux, give
the part of the equation of state attributed to nonideal
effects:

E djjJ852brgE dj f (0)j~j2u!•“ ln~r2g!

52bur2g“ ln~r2g!52“~ubr2g!.

~A10!

Combining with the ideal gas part of the equation of sta
ru, we obtain the total equation of state:

P5ru~11brg!. ~A11!

For hard sphere gases, the radius distribution functiong is
known as up to (br)3 @17,24#.

The energy transfer due to the effect ofJ8 is

1

2E djj2J852
1

2
brgE dj f (0)j2~j2u!•“ ln~r2g!

52u•“~ubr2g!. ~A12!

This correctly corresponds to the nonideal gas thermal eq
tion of state,@Eq. ~A11!#.
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APPENDIX B: CHAPMAN-ENSKOG ANALYSIS
OF THE LATTICE BOLTZMANN EQUATION

By introducing the expansions@36,51#

f a~x1ead t ,t1d t!5 (
n50

`
en

n!
D t

nf a~x,t !, ~B1a!

f a5 (
n50

`

enf a
(n) , ~B1b!

] t5 (
n50

`

en] tn
, ~B1c!

wheree5d t andDt[(] t1ea•“), we can rewrite the lattice
Boltzmann equation with a forcing term

f a~x1ead t ,t1d t!2 f a~x,t !

52
g

t
@ f a~x,t !2 f a

(eq)~x,t !#1Ja8d t2Fad t

~B2!

in the consecutive order of the parametere as

e0: f a
(0)5 f a

(eq) , ~B3a!

e1: f a
(1)52

t

g
Dt0

f a
(0) , ~B3b!

e2: f a
(2)52

t

2g
@Dt0

2 12] t1
# f a

(0)2
t

g
Dt0

f a
(1) , ~B3c!

whereDtn
[(] tn

1ea•“). Note that bothFa and Ja8 in Eq.
~B2! do not appear in the above equations. However, t
will appear in the governing equations in what follows. T
distribution functionf a is the normal solution which is con
strained by

(
a

f a
(0)F 1

ea
G5F r

ruG , ~B4a!

(
a

f a
(n)F 1

ea
G5F0

0G , n.0, ~B4b!

where the equilibriumf a
(0) ~for the nine-velocity model! is

given by

f a
(eq)5warH 113

~ea•u!

c2
1

9

2

~ea•u!2

c4
2

3

2

u2

c2J . ~B5!

The first order collision termJa8 , which is responsible for the
volume exclusion effect in dense gases, is given by

Ja852 f a
(eq)b r g~ea2u!•“ ln~r2g!. ~B6!

The forcing termFa , for the nine-bit model, is given by

Fa523 warF 1

c2
~ea2u!13

~ea•u!

c4
eaG•a, ~B7!
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which satisfies the following constraints:

(
a

Fa50, ~B8a!

(
a

eaFa52ra, ~B8b!

(
a

ea,iea, jFa52r~uiaj1ujai !. ~B8c!

Also, f a is a Chapman-Enskog ansatz,f (x,j,t)
5 f (x,j;r,u,u), i.e., the temporal dependence off a is
through the hydrodynamic variablesr, u andu. Therefore,

] t f a5
] f a

]r
] tr1

] f a

]u
] tu ~B9!

for isothermal fluids.
For the nine-velocity model, we have

(
a

f a
(0)5r, ~B10a!

(
a

ea f a
(0)5ru, ~B10b!

(
a

ea,iea, j f a
(0)5urd i j 1ruiuj , ~B10c!

(
a

ea,iea, jea,kf a
(0)5urD i jkl ul ~B10d!

and

(
a

Ja850, ~B11a!

(
a

eaJa852u b“~r2g!, ~B11b!

(
a

ea,iea, j Ja85b@uiuju•“2u~ui] j1uj] i !#~r2g!,

~B11c!

whered i j andd i jkl are the Kroneckerd ’s with two and four
indices, respectively, and

D i jkl 5d i j dkl1d ikd j l 1d i l d jk . ~B12!

The governing equations off a up to the order ofe are

Dt0
f (0)52

g

t
f (1)1Ja82Fa , ~B13a!

] t1
f (0)1

~2t2g!

2t
Dt0

f (1)52
g

t
f (2). ~B13b!
In the derivation of Eq.~B13b!, we have made the approx
mation thatDt0

g'0, which is accurate up toO(u2). The
moments of the first order governing equation,@Eq. ~B13a!#,
lead to the Euler equations

] t0
r1“•~ru!50, ~B14a!

] t0
~ru!1“•u (0)5F2u b“~r2g!, ~B14b!

whereu (0)5(aeaea f a
(0) is the zeroth-order momentum flu

tensor. Withu i j
(0) given by Eq.~B10c!, the above equations

can be rewritten as

] t0
r1“•~ru!50, ~B15a!

] t0
u1u•“u52

1

r
“P1a, ~B15b!

wherea5F/r is the acceleration, and

P5ru~11brg! ~B16!

is the equation of state for a nonideal gas, depending on
radial distribution functiong. ~Note that for the nine-velocity
isothermal model here,u5c2/3.!

The moments of the second order governing equat
@Eq. ~B13b!#, lead to the equations

] t1
r50, ~B17a!

] t1
~ru!1

~2t2g!

2t
“•u (1)50, ~B17b!

where u (1)5(aeaea f a
(1) is the first-order momentum flux

tensor. With the aid of Eqs.~B10! and ~B15!, we have

u i j
(1)5(

a
ea,iea, j f a

(1)52
t

g (
a

ea,iea, jDt0
f a

(0)

52
t

g
@] t0

u i j
(0)1u~“•ru d i j 1] iruj1] jrui !#

52
t

g
@u~] t0

r1“•ru!d i j 1] t0
~ruiuj !

1u~] iruj1] jrui !#

52
t

g
@ur~] iuj1] jui !1O~M3!,

where] i5]/]xi . In the above result foru i j
(1) , terms such as

ui] jr have been neglected because“r is of the order
O(M2), and it is done in consistence with the small veloc
expansion of f a

(eq) up to the order ofO(u2). @Note that
O(u)5O(M ); therefore, we take the liberty to interchang
these notations.# Similarly, we have
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] ju i j
(1)52

t

g
ur] j~] iuj1] jui !1O~M3!

52
t

g
ur~] i“•u1“

2ui !1O~M3!

52
t

g
ur“2ui1O~M3!, ~B18!

where the term“•u has been neglected because it is
O(M2) due to Eq.~B15a!.

Combining the first and the second order results@Eqs.
~B14! and~B17!# together by] t5] t0

1e] t1
and recalling that

e5d t , we have the Navier-Stokes equations@accurate up to
the order ofO(M2) in the momentum equation#

] tr1“•~ru!50, ~B19a!

] tu 1u•“u52
1

r
“P1n“2u1a, ~B19b!

where the viscosity is given by

n5S t

g
2

1

2D ud t5
~2t2g!

6g

dx
2

d t
,

and the pressure~the equation of state! is given by

P5ru~11brg!5 1
3 c2r~11brg!, ~B20!

whereu5c2/3 has been substituted. With the above eq
tion of state, the sound speed,cs , is given by

cs
25uF11

d

dr
~br2g!G

5
1

3
c2F11

d

dr
~br2g!G . ~B21!

It should be pointed out that, if instead of Eq.~B8c!, the
constraint

(
a

ea,iea, jFa50 ~B22!

is then imposed, the termra•u, which is the work done by
the force, does not appear in the energy balance equa
Therefore, the constraint of Eq.~B8c! must be imposed to
assure a correct energy balance equation.
,

re
f

-

n.

APPENDIX C: EQUILIBRIUM DISTRIBUTION FUNCTION
SHIFTED BY ACCELERATION

If we start with the BGK Boltzmann equation without
forcing term,

] t f 1j•“ f 52
1

td t
@ f 2 f (0)#, ~C1!

and assume that particle is impulsively accelerated by ac
erationa with the mean free timetd t . Under this circum-
stance, the equilibrium distribution function becomes@35#

f (0)~r,u2atd t ,u!5r~2pu!2D/2exp@2~j2u1atd t!
2/2u#.

~C2!

Accordingly,

f (eq)5r~2pu!2D/2exp~2j2/2u!

3H 11
j•~u2atd t!

u
1

@j•~u2atd t!#
2

2u2

2
~u2atd t!

2

2u J
'rv~j!H 11

j•u

u
1

~j•u!2

2u2
2

u2

2u

2F1

u
~j2u!1

1~j•u!

u2
jG•atd tJ . ~C3!

Here we have consistently ignored the terms of the or
O(d t

2) or higher order. Substitutingu5c2/3, where c
[dx /d t , we have

f a
(eq)5warF11

3~ea•u!

c2
1

9~ea•u!2

2c4
2

3u2

2c2G
23 wartd tF 1

c2
~ea2u!1

3~ea•u!

c4
,eaG•a. ~C4!

The second part off a
(eq) exactly produces the forcing termFa

obtained previously whenf a
(eq) is substituted into the follow-

ing lattice Boltzmann equation without a forcing term:

f a~x1ead t ,t1d t!2 f a~x,t !52
1

t
@ f a~x,t !2 f a

(eq)~x,t !#.

~C5!
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